

Programme Code No
Programme Name
Course Code \& Name

Batch
No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai-15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS-41 Integral Transforms and Calculus of
Variations
: CY- 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 1

Answer any two of the following three questions
Max: 30 Marks

1. Find the inverse Laplace of $\frac{5 s^{2}-15 s-11}{(s+1)(s-2)^{3}}$.
2. Find the Fourier transform of $f(t)$ defined by

$$
f(x)= \begin{cases}1, & |t|<a \\ 0, & |t|>a\end{cases}
$$

and hence evaluate $\int_{0}^{\infty} \frac{\sin s}{s} d s \int_{\text {and }}^{\infty} \frac{\sin a s \cos s t}{s} d s$
3. Derive Euler-Lagrange's equation.

Programme Code No
Programme Name
Course Code \& Name

Batch
No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS-41 Integral Transforms and Calculus of
Variations
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 2

Answer any two of the following three questions

Max: 30 Marks

1. Prove that (i) $L\left[J_{1}(t)\right]=1-\frac{p}{\sqrt{p^{2}+1}}$.
(ii) $L\left[t J_{1}(t)\right]=\frac{1}{\left(p^{2}+1\right)^{3 / 2}}$
2. Solve $\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0$, given that $y(0)=-2 ; \quad y^{\prime}(0)=5$.
3. Discuss Brachistochrone problem.

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS - 42 Probability and Random Processes
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 1

Answer any two of the following three questions

Max: 30 Marks

1. Find the mean, variance and moment generating function of Binomial distribution.
2. Verify that $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\left[-\frac{(x-m)^{2}}{2 \sigma^{2}}\right]}$ where $\sigma>0$, is a density for normal distribution.
3. Calculate the rank correlation coefficient from the following data

Statistics Rank	1	2	3	4	5	6	7	8	9	10
Mathematics Rank	2	4	1	5	3	9	7	10	6	8

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS - 42 Probability and Random Processes
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 2

Answer any two of the following three questions

Max: 30 Marks

1. Find mean, variance and moment generating function of the Weibull distribution.
2. Let X be a continuous random variable with probability density function $f_{X}(x)$. Let $y=g(x)$ be strictly monotonic (increasing or decreasing) function of x. Assume that $g(x)$ is differentiable for all x. Then probability density function of the random variable Y is given by $h_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|$, where x is expressed in terms of y.
3. If $\{N(t), t \geq 0\}$ is a non stationary Poisson process with intensity function $\lambda(t), t \geq 0$, then $N(t+s)-N(s)$ is a Poisson random variable with mean, then prove that $m(t+s)-m(s)=\int_{s}^{t+s} \lambda(y) d y .$.

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS - 43 Continuum Mechanics
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 1

Answer any two of the following three questions

Max: 30 Marks

1. Discuss Principal values and Principal directions of Real symmetric tensors.
2. Discuss compatibility conditions for infinitesimal Strain components.
3. Discuss Plane-Poiseuille flow.

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS - 43 Continuum Mechanics
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 2

Answer any two of the following three questions

Max: $\mathbf{3 0}$ Marks

1. Given the velocity field: $v_{1}=k x_{2} ; \quad v_{2}=v_{3}=0$.
(a) Find the rate of deformation and spin tensor.
(b) Determine the rate of extension of the material elements:
$d x^{(1)}=\left(d s_{1}\right) e_{1}, d x^{(2)}=\left(d s_{2}\right) e_{2}$, and $d x=\frac{d s}{\sqrt{5}}\left(e_{1}+2 e_{2}\right)$
(c) Find the maximum and minimum rates of extension.
2. Discuss the components of stress tensor.
3. Discuss Hagen-Poiseuille flow.

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS - 44 Mathematical Methods
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 1

Answer any two of the following three questions

Max: $\mathbf{3 0}$ Marks

1. Solve the Fredholm integral equation of the second kind

$$
g(s)=f(s)+\lambda \int_{0}^{1}\left(s t^{2}+s^{2} t\right) g(t) d t
$$

2. Derive Freedom's first series.
3. Form an integral equation corresponding to the differential equation $y^{\prime \prime}+s y^{\prime}+y=0$ with the initial conditions $y(0)=1, y^{\prime}(0)=0$.

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS - 44 Mathematical Methods
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 2

Answer any two of the following three questions
Max: $\mathbf{3 0}$ Marks

1. Solve the integral equation by approximation method.

$$
g(s)=e^{s}-s-\int_{0}^{1} s\left(e^{s t}-1\right) g(t) d t
$$

2. Find the resolvent kernel and solution of

$$
g(s)=f(s)+\lambda \int_{0}^{1}(s+t) g(t) d t
$$

3. Find the solution of Abel integral equation.

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS-EL6 Optimization Techniques
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 1

Answer any two of the following three questions
Max: 30 Marks

1. Solve following transportation problem.

	1	2	3	4	5	6	Supply
I	9	12	9	6	9	10	
II	7	3	7	7	5	5	6
III	6	5	9	11	3	11	2
IV	6	8	11	2	2	10	9
Demand	4	4	6	2	4	2	

2. Write Dijkstra's Algorithm.
3. Find the optimum integer solution to the following linear programming problem.

Max. $Z=5 x_{1}+8 x_{2}$
Subject to:

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 8 \\
& 4 x_{1}+x_{2} \leq 10 \\
& x_{1}, \quad x_{2} \quad \geq 0 \text { and are integers. }
\end{aligned}
$$

Programme Code No
Programme Name
Course Code \& Name Batch

No. of Assignment
Maximum CIA marks

TAMIL NADU OPEN UNIVERSITY

Chennai - 15
School of Sciences

HOME / SPOT ASSIGNMENT

: 131
: M. Sc Mathematics
: MMSS-EL6 Optimization Techniques
: CY 2022
: One Assignment for Each 2 Credits
: 30 (Average of Total No. of Assignments)

ASSIGNMENT - 2

Answer any two of the following three questions
Max: 30 Marks

1. Solve the following assignment problem.

2	9	2	7	1
6	8	7	6	1
4	6	5	3	1
4	2	7	3	1
5	3	9	5	1

2. Write Maximal flow problem algorithm.
3. Solve the following 0-1 programming problem by additive algorithm.

Maximize $w=3 y_{1}+2 y_{2}-5 y_{3}-2 y_{4}+3 y_{5}$
Subject to

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}+2 y_{4}+y_{5} \leq 4 \\
& 7 y_{1}+3 y_{3}-y_{4}+3 y_{5} \leq 8 \\
& 11 y_{1}-6 y_{2}+3 y_{4}-3 y_{5} \geq 3 \\
& y_{1}, y_{2}, y_{3}, y_{4}, y_{5}=\{0,1\}
\end{aligned}
$$

